

EDT2400X-SA

(Thread Module with BLE5.3)

REV 1.1

Overview

EDT2400X-SA is a highly integrated wireless **thread** module for IoT connectivity. It is based on Silicon Labs, EFR32MG24 SoC, and is ideal for extending the 2.4GHz wireless range using mesh topology. EDT2400X-SA can be used very appropriately for Smart Home Connectivity such as Matter, and also building and factory automation.

Features

Items	Features
	Cortex-M33
	78MHz @ Maximum Operating Frequency
Core MCU	1536 KB @Flash
	256 KB @RAM
	Secure Vault (Secure Boot, TRNG, Secure Key Management, etc)
	Thread @802.15.4, OpenThread, Matter support
	BLE5.3
Wireless	ZigBee Support
	-105 dBm @ Thread Sensitivity
	20 dBm @ Max TX Power
	1.5uA @ Deep Sleep Mode
	6mA @ RX Mode Current
Operating Condition	45 mA @10dBm Output Power
	160 mA @ 20dBm Output Power
	3.2 V to 3.8 V @ Operating Voltage
	-25 °C to 85 °C / Optional -40 °C to 105 °C
Peripherals	GPIO, UART, SPI, I2C, PWM, ADC/DAC
Dimension	15 x 23 mm

Application

- Smart Home Home appliance, Sensors, switches, door locks, smart plugs, lighting
- Building/Factory Automation and Security
- Device Usage End-Device, Router, Boarder Router/Hub/Gateway/Controller

Part Code

E	D	т	2	4	0	0	Х	-	S	Α
	Part Name1					FW Option	Pa	art Nai	me2	

Contents List

1. EDT2400X-SA System

- 1.1 Block Diagram
- 1.2 Pin Map
- 1.3 Pin Description
- 1.4 Peripherals

2. Electrical Characteristics

- 2.1 Absolute Maximum Ratings
- 2.2 Recommended Operating Conditions
- 2.3 DC Characteristics
- 2.4 Current Consumption

3. Wireless Characteristics

- 3.1 Transmitter Characteristics
- 3.2 Receiver Characteristics
- 3.3 Antenna Radiation

4. Design Consideration

- 4.1 Dimension
- 4.2 PCB PAD Recommendation
- 4.3 Layout Recommendation on Host Board
- 4.4 Example Schematics

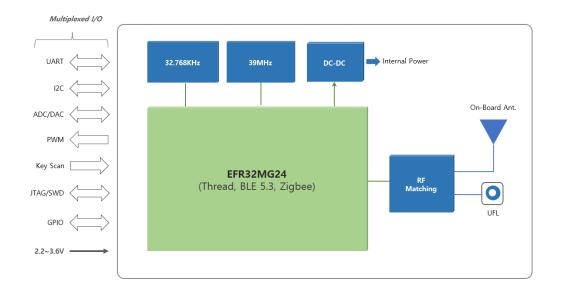
5. Product Handling

5.2 SMT Reflow

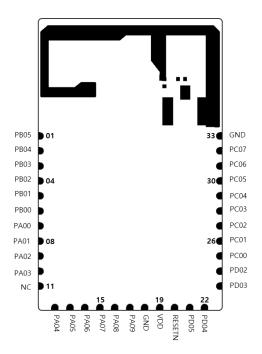
6. Package Specifications

5.1 Label & Marking5.2 Packing

7. Technical Reference


- 6.1 OpenThread
- 6.2 Silicon Labs

1. EDT2400X-SA System


1.1 Block Diagram

The system's internal block and external interface of the EDT2400X-SA are shown in the figure below.

1.2 PIN Map

EDT2400X-SA consists of a total of 33 pins of multiplexed I/O and power.

1.3 Pin Description

I/O pins of EDT2400X are multiplexed with various peripheral functions. Therefore, you can switch to other functions by changing the default settings.

No	Name	I/O	Default Functi	on
Pin Map	o on Left Side			
1	PB05	-	GPIO	
2	PB04	0	LED_LIGHT	GPIO output,
Z	PD04	0	LED_LIGHT	The output is toggled according to the input of pin 3
3	PB03	I	SW1	GPIO input,
J	FD05	1	5001	The output of pin 2 toggles by input of this port.
4	PB02	Ο	LED_STATE	GPIO output,
·	1 802	0		Indicate the operating status of the system.
5	PB01	0	SW0	GPIO input,
5	1 001	0	5110	Controls the mode of operation of the module.
6	PB00	-	GPIO	
7	PA00	-	GPIO	
8	PA01	0	SWCLK	Interface for debug and FW download
9	PA02	I/O	SWDIO	Interface for debug and FW download
10	PA03	0	SWO	Interface for debug and FW download
11	NC	-		
Pin Map	o on Bottom S	Side		
12	2 PA04 C		USR_TXD	UART interface, Baud Rate 115200bps
12	17.01	0		for command/response when using Host MCU
13	PA05	I	USR_RXD	UART interface, Baud Rate 115200bps
15	17.00	-		for command/response when using Host MCU
14	PA06	-	GPIO	
15	PA07	-	GPIO	
16	PA08	0	VCOM_TXD	UART interface, Baud Rate 115200bps
10	17.00	0		for log message and CLI command input
17	PA09	I	VCOM RXD	UART interface, Baud Rate 115200bps
1,	17.05	-		for log message and CLI command input
18	GND	Р	GND	Power Ground
19	VDD	Р	VDD	Power Input, 1.8V~3.8V
				Reset input signal, Power-on-reset function supported
				The RESETn pin is pulled up to an internal supply. An external
20	RESETN	Ι	RESETN	pull-up is not recommended. To apply an external reset source
				to this pin, it is required to only drive this pin low during
				reset, and let the internal pull-up ensure that reset is released.
21	PD05	-	GPIO	
22	PD04	-	GPIO	
Pin Map	o on Right Sid	le		

23	PD03	-	GPIO	
24	PD02	-	GPIO	
25	PC00	0	SPI_CS	Master mode, SPI Slave Enable signal
26	PC01	0	SPI_MOSI	Master operation, SPI data output to slave
27	PC02	Ι	SPI_MISO	Master operation, SPI data input from slave
28	PC03	0	SPI_CLK	Master operation, SPI clock output signal
29	PC04	-	GPIO	
30	PC05	0	I2C_SCL	Master operation, I2C clock signal
31	PC06	-	GPIO	
32	PC07	I/O		Master operation, I2C data Input/Output signal
33	GND	Р	GND	Power GND

1.4 Peripherals

GPIO (General Purpose Input/Output)

Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO subsystem supports asynchronous external pin interrupts.

Timer/Counter/PWM

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions. The core of each TIMER is a 16-bit or 32-bit counter with up to 3 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports the generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers

RTC (Real-Time Clock)

The RTC with a 32-bit counter can be clocked by any of the onboard low-frequency oscillators, and it is capable of providing system wake-up at user-defined intervals.

USART/SPI (Universal Synchronous/Asynchronous Receiver/Transmitter)

USART supports full duplex asynchronous UART communication with hardware flow control as well as RS-485,

SPI, MicroWire, and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- I²S

I²C (Inter-Integrated Circuit Interface)

The I^2C module provides an interface between the MCU and a serial I^2C bus. It is capable of acting as both a master and a slave and supports multi-drop buses.

ADC (Analog to Digital Converter)

The ADC is a hybrid architecture combining techniques from both SAR and Delta-Sigma style converters. The ADC includes integrated voltage reference options. ADC Resolution is 12 bit @1Msps, 16 bit @76.9 kbps

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Stresses beyond those listed below may cause permanent damage to the device.

Parameter	Test Condition	Min	Тур	Max	Unit
Storage temperature (TA)	Default Module	-30	-	+120	°C
Storage temperature (TA)	Optional Module	-40		+125	
Voltage on VDD		-0.3	-	3.8	V
Voltage on GPIO		-0.3	-	VDD+0.3	V
Voltage on RESETn		-0.3	-	3.8	V
Current per I/O pin	Sink	-	-	50	mA
	Source	-	-	50	mA

2.2 General Operating Conditions

Parameter	Test Condition	Min	Тур	Max	Unit
Operating Ambient temperature	Default Module	-20	-	+85	°C
Operating Ambient temperature	Optional Module	-40		+105	°C
VDD Supply Voltage		3.2	3.3	3.8	V
	Deep Sleep Mode	-	1.5	-	uA
Operating Current	RX Mode	-	-20 - +85 -40 +105 3.2 3.3 3.8 - 1.5 - - 6 - - 45 - - 160 - 10 - - - 0.3*VDD - - - 0.3*VDD	mA	
operating current	TX Mode, 10 dBm @CW	-	45	-	mA
	TX Mode, 20 dBm @CW	-	160	-	mA
Flash Data Retention	TA ≤ 125 °C	10	-	-	Years
Flash erase cycles before failure	TA ≤ 125 °C	10,000	-	-	Cycles
GPIO Input Low Voltage		-	-	0.3*VDD	V
GPIO Input High Voltage		0.7*VDD	-	-	V
GPIO Output High Voltage	Source 20mA	0.8*VDD			V
GPIO Output Low Voltage	Sink 20mA			0.2*VDD	V
RESETN low time		100			ns

3. Wireless Characteristics

3.1Transmitter Characteristics

3.1.1 RF Transmitter General Characteristics for the 2.4 GHz Band

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Max	Unit
RF frequency range		2400	—	2483.5	MHz
Maximum TX power		_	20.0	_	dBm

Note: TX power is limited by regulatory domain.

3.1.2 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Мах	Unit
Error vector magnitude per 802.15.4-2011	Average across frequency, signal is DSSS-OQPSK reference packet, VDD = 3.3 V, P _{out} = 20 dBm	_	3.1	_	% rms
	Average across frequency, signal is DSSS-OQPSK reference packet, VDD = 3.3 V, P _{out} = 10 dBm	_	2.9	_	% rms
Power spectral density limit	Per FCC part 15.247, VDD = 3.3 V, P _{out} = 20 dBm	_	0.5	_	dBm/ 3kHz
	ETSI 300.328 P _{out} = 10 dBm	_	8	_	dBm
Occupied channel bandwidth per ETSI EN300.328	99% BW at highest and lowest channels in band, P _{out} = 10 dBm	_	2.2	_	MHz

3.1.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Max	Unit
Transmit 6 dB bandwidth	$VDD = 3.3 V, P_{out} = 20 dBm$	_	718		kHz

	$P_{out} = 10 \text{ dBm}$	_	714	_	kHz
	$P_{out} = 0 dBm$	_	715	_	kHz
Power spectral density limit	VDD = 3.3 V, P _{out} = 20 dBm,	_	-0.5	_	dBm/
	Per FCC part 15.247				3kHz
	Per ETSI 300.328 at 10 dBm/1	—	9.7	_	dBm
	MHz				
Occupied channel bandwidth	P _{out} = 10 dBm 99% BW at highest	—	1	—	MHz
per ETSI EN300.328	and lowest channels in band				

3.1.4 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Мах	Unit
Transmit 6 dB bandwidth	$VDD = 3.3 V, P_{out} = 20 dBm$	—	1307	_	kHz
Power spectral density limit	VDD = 3.3 V, P _{out} = 20 dBm, Per FCC part 15.247	—	1.5	_	dBm/ 3kHz
	Per ETSI 300.328 at 10 dBm/1 MHz	_	8.7	_	dBm
Occupied channel bandwidth per ETSI EN300.328	$P_{Out} = 10 \text{ dBm } 99\% \text{ BW at highest}$ and lowest channels in band	_	2.1	_	MHz

3.1.5 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Мах	Unit
Transmit 6 dB bandwidth	$VDD = 3.3 V, P_{out} = 20 dBm$	—	717	_	kHz
Power spectral density limit	VDD = 3.3 V, P _{out} = 20 dBm,	_	-0.5	_	dBm/
	Per FCC part 15.247				3kHz
	Per ETSI 300.328 at 10 dBm/1	_	9.7	_	dBm
	MHz				
Occupied channel bandwidth	Pout = 10 dBm 99% BW at highest	_	1	_	MHz
per ETSI EN300.328	and lowest channels in band				

Parameter	Test Condition	Min	Тур	Мах	Unit
Transmit 6 dB bandwidth	$VDD = 3.3 V, P_{out} = 20 dBm$	_	651	_	kHz
Power spectral density limit	VDD = 3.3 V, P _{out} = 20 dBm, Per FCC part 15.247	_	13.7	_	dBm/ 3kHz
	Per ETSI 300.328 at 10 dBm/1 MHz	_	9.7	_	dBm
Occupied channel bandwidth per ETSI EN300.328	$P_{Out} = 10 \text{ dBm } 99\% \text{ BW at highest}$ and lowest channels in band	—	1	—	MHz
	$P_{out} = 0 \text{ dBm } 99\% \text{ BW at highest}$ and lowest channels in band	—	1	_	MHz

3.1.6 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

3.2 Receiver Characteristics

3.2.1 RF Receiver General Characteristics for the 2.4 GHz Band

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Max	Unit
RF frequency range		2400	_	2483.5	MHz

3.2.2 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Max	Unit
Max RX input, 1% PER	Signal is reference signal, packet length is 20 octets	_	10	_	dBm
Sensitivity, 1% PER	Signal is reference signal, packet length is 20 octets	_	-105	_	dBm

3.2.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Max	Unit
Max RX input, 0.017% BER	Signal is reference signal	_	10	_	dBm
Sensitivity, 0.017% BER	Signal is reference signal,	_	-95	_	dBm
	37 byte payload				

3.2.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Мах	Unit
Max RX input, 0.017% BER	Signal is reference signal	_	10	_	dBm
Sensitivity, 0.017% BER	Signal is reference signal, 255 byte payload	—	-93	_	dBm

3.2.5 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate

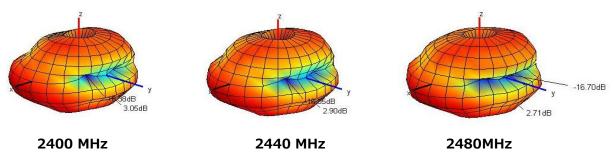
Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Max	Unit
Max RX input, 0.017% BER	Signal is reference signal	_	10	_	dBm
Sensitivity, 0.017% BER	Signal is reference signal, 255 byte payload	_	-100	_	dBm

3.2.6 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate

Unless otherwise indicated, typical conditions are TA = 25 °C, RF center frequency = 2.45 GHz. VDD = 3.3 V

Parameter	Test Condition	Min	Тур	Max	Unit
Max RX input, 0.017% BER	Signal is reference signal	_	10	_	dBm
Sensitivity, 0.017% BER	Signal is reference signal, 255 byte payload	_	-105	_	dBm



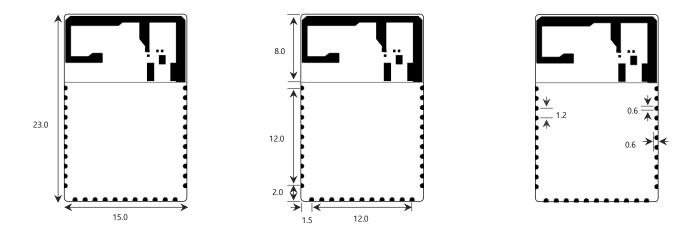
3.2 Antenna Radiation

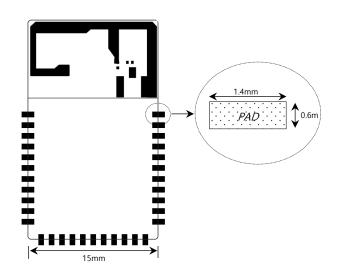
The Onboard antenna of EDT2400X-SA is designed as a PIFA type and has a high efficiency. The radiation result is measured with the EVB-EDT2400X-SA.

3.2.1 Antenna Radiation Pattern

3.2.1 Antenna Gain Table

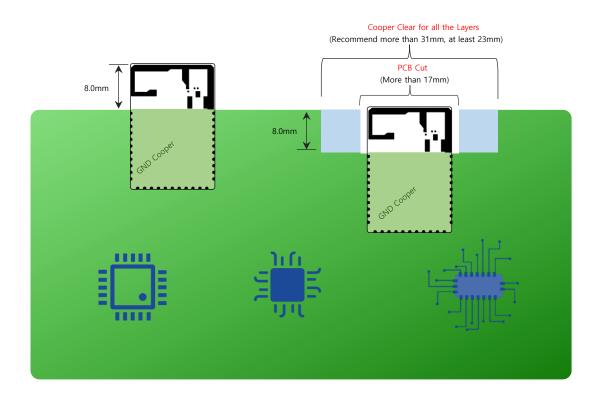
	1	2	3	4	5	6	7	8	9	10	11
Frequency [MHz]	2400	2410	2420	2430	2440	2450	2460	2470	2480	2490	2500
Efficiency [dB]	-1.54	-1.55	-1.53	-1.53	-1.50	-1.41	-1.44	-1.35	-1.52	-1.53	-1.55
Efficiency [%]	70.2	70.0	70.3	70.4	70.9	72.4	71.8	73.3	70.4	70.4	70.1
TRG _e [dB]	-3.41	-3.43	-3.40	-3.36	-3.27	-3.18	-3.13	-3.02	-3.07	-3.07	-3.07
Gain _{e Peak} [dBi]	2.19	2.07	2.02	2.00	2.09	2.15	2.19	2.29	2.25	2.23	2.15
Gaine Min [dBi]	-25.19	-25.92	-26.21	-24.91	-28.11	-39.58	-33.38	-26.68	-34.81	-33.32	-25.65
TRG _p [dB]	-6.09	-6.10	-6.10	-6.15	-6.23	-6.14	-6.35	-6.29	-6.76	-6.78	-6.83
Gain _{g Peak} [dBi]	0.53	0.34	0.18	-0.04	-0.21	-0.22	-0.42	-0.32	-0.70	-0.57	-0.50
Gain _{e Min} [dBi]	-33.86	-34.42	-30.18	-29.92	-30.21	-33.45	-35.57	-33.32	-31.28	-32.16	-44.77
UHRG [dB]	-6.72	-6.64	-6.54	-6.48	-6.41	-6.25	-6.25	-6.10	-6.29	-6.27	-6.29
UHRG/TRG [%]	30.31	30.97	31.54	31.96	32.23	32.80	33.04	33.51	33.36	33.51	33.57
H-Plane	-5.73	-5.79	-5.77	-5.72	-5.57	-5.40	-5.24	-5.07	-5.08	-5.06	-5.09
E1-Plane, AVG [dB]	-4.75	-4.73	-4.66	-4.62	-4.53	-4.48	-4.49	-4.46	-4.58	-4.62	-4.68
E2-Plane, AVG [dB]	-2.93	-2.96	-2.93	-2.90	-2.80	-2.69	-2.61	-2.46	-2.48	-2.44	-2.42
Peak Gain [dBi]	3.05	2.98	2.97	2.91	2.90	2.95	2.88	2.94	2.71	2.77	2.76
Directivity [dB]	4.58	4.53	4.50	4.44	4.39	4.36	4.31	4.29	4.24	4.29	4.30
Minimum Gain [dBi]	-18.38	-17.71	-16.97	-16.34	-16.05	-15.75	-15.96	-15.96	-16.70	-16.87	-17.13
Test Condition	FS										
Antenna Type											



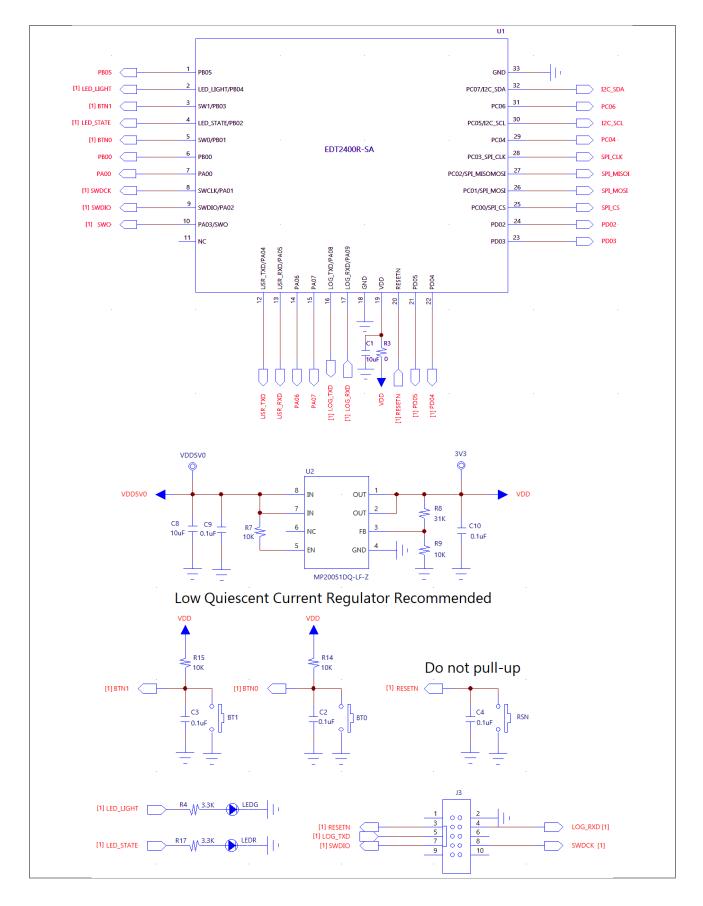

4. Design Consideration

4.1 Dimension

Unit [mm]



4.2 PCB PAD Recommendation


4.3 Layout Recommendation on Host Board

In applications using the On-board PCB antenna built into the module, refer to the following design guide. If an external antenna is used, it is not necessary to follow the design guide below.

4.4 Example Schematic

6. Package Specifications

5.1 Label & Marking

5.2 Packing

7. Technical Reference

6.1 OpenThread https://openthread.io/

6.2 CSA Matter

https://csa-iot.org/

6.2 Silicon Labs www.silabs.com