

Data Sheet Mar.22 2018 Rev 0.5

www.usi.com.tw

Product SPEC

WM-SG-SM-42 LoRa Module

01

This document is controlled and confidential under the terms of MFi

Introduction

The WM-SG-SM-42 LoRa module which refers as "module" is a small size module and consists of a SEMTECH SX1272, an authorization chip and a U.FL connect. The WM-SG-SM-42 provides for the highest-level integration for electronic accessories, featuring integrated Lora.

The small size & low profile physical design makes it easier for system design to enable high performance LoRa connectivity without space constrain. This multifunctionality and board-to-board physical interface provides UART interface options.

For the software and driver development, USI provides extensive technical document and reference software code for the system integration under the agreement of SEMTECH and ST.

Hardware evaluation kit and development utilities will be released base on listed OS and processors to OEM customers.

Features

Semtech SX1272

- Provides LoRa communication
- High sensitivity: down to -137 dBm
- Low power operation supporting

ST STM32L052 Microprocessor

- ARM 32-bit Cortex-M0+ CPU
- CPU frequency up to 32MHz
- Embedded 8K SDRAM and 64K Flash
- 20 General Purpose IOs multiplexed with other interfaces
- Hardware division and fast multiplier
- Little-endian memory space

WM-SG-SM-42 LoRa Module

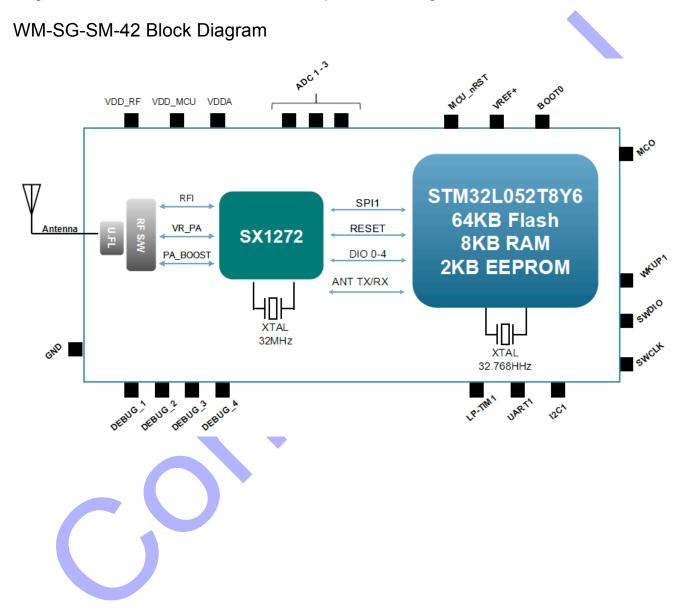
- Featuring integrated LoRa modem
- Low power consumption & excellent power
- management performance extend battery life.
- Small size suitable for low volume system integration.
- Easy for integration into mobile and handheld device with flexible system configuration.
- Lead Free design which supporting Green design requirement, RoHS Compliance and Halogen-free.
- FCC/CE/LoRaWAN certified

Device Package 12.0x13.0x2.0 mm

	Change Sheet							
Rev.	Rev. Date Description of change A							
		Page	Par	Change(s)				
0.1	12/08/16			Initial release	Kimi			
0.2	12/09/16			Update specification	Chintang			
0.3	3/1/17			Update specification	Chintang			
0.4	8/16/17	10		Update current consumption specification	Chintang			
0.5	3/22/18	All		Correction revision error	Chintang			

TABLE OF CONTENTS

Features	2
Introduction	2
1 EXECUTIVE SUMMARY	5
2 BLOCK DIAGRAM	6
3 DELIVERABLES	7
4 REFERENCE DOCUMENTS	
5 TECHNICAL SPECIFICATION.	9
 5.1 ABSOLUTE MAXIMUM RATING	9 9 9
5.2.3 CURRENT CONSUMPTION	.11
6 CPU AND FLASH MEMORY	
6.1 ARM CORTEX-M0+ CPU CORE6.2 MEMORIES	13
7 I/O PORT CHARACTERISTICS	14
8 INTERFACE	15
9 DIMENSIONS, WEIGHT AND MOUNTING	18
10 RECOMMEND REFLOW PROFILE	23
11 PACKAGE AND STORAGE CONDITION	24
12 ESD LEVEL	28
13 MSL LEVEL / STORAGE CONDITION	29
14 APPLICATION REFERENCE DESIGN	30


1 EXECUTIVE SUMMARY

The WM-SG-SM-42 module - is one of the product families in UG's product offering, targeting for system integration requiring a smaller form factor. It also provides the standard migration to high data rate to UG's current customers.

The purpose of this document is to define the product specification for LoRa RF module WM-SG-SM-42. All the data in this document is based on SX1272 and STM32L052 datasheet and other documents provided from Semtech and STM. The data will be updated after implementing the measurement of the module.

2 BLOCK DIAGRAM

The WM-SG-SM-42 module is designed based on SX1272 and STM32L052 solution. It supports generic UART interface to connect the RF to the host processor. A simplified block diagram of the WM-SG-SM-42 module is depicted in the Fig. below.

3 DELIVERABLES

The following products and software will be part of the product.

- WM-SG-SM-42 Module with packaging
- Evaluation kits (with UART interface)
- Software utility which supporting customer for integration, performance test and homologation. Capable of testing, loading (firmware) and configuring (MAC, CIS) for the WM-SG-SM-42 module.
- Unit Test / Qualification report
- Product Specifications.
- Agency certification test report base on adapter boards

4 REFERENCE DOCUMENTS

C.I.S.P.R. Pub. 22	"Limits and methods of measurement of radio interference characteristics of information technology equipment." International Special Committee on Radio Interference (C.I.S.P.R.), Third Edition, 1997.
CB Bulletin No. 96A	"Adherence to IEC Standards: "Requirements for IEC 950, 2 nd Edition and Amendments 1 (1991), 2(1993), 3 (1995) and 4(1996). Product Categories: Meas, Med, Off, Tron." IEC System for Conformity Testing to Standards for Safety of Electrical Equipment (IECEE), April 2000.
CFR 47, Part 15-B	"Unintentional Radiators". Title 47 of the Code of Federal Regulations, Part 15, FCC Rules, Radio Frequency Devices, Subpart B.
CFR 47, Part 15-C	"Intentional Radiators". Title 47 of the Code of Federal Regulations, Part 15, FCC Rules, Subpart C. URL: http://www.access.gpo.gov/nara/cfr/waisidx_98/47cfr15_98.html
CSA C22.2 No. 950-95	"Safety of Information Technology Equipment including Electrical Business Equipment, Third Edition." Canadian Standards Association, 1995, including revised pages through July 1997.
EN 60 950	"Safety of Information Technology Equipment Including Electrical Business Equipment." European Committee for Electrotechnical Standardization (CENELEC), 1996, (IEC 950, Second Edition, including Amendment 1, 2, 3 and 4).
IEC 950	"Safety of Information Technology Equipment Including Electrical Business Equipment." European Committee for Electrotechnical Standardization, Intentional Electrotechnical Commission. 1991, Second Edition, including Amendments 1, 2, 3, and 4.
IEEE 802.11	"Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications." Institute of Electrical and Electronics Engineers. 1999.

5 TECHNICAL SPECIFICATION

5.1 ABSOLUTE MAXIMUM RATING

Supply Power	Max +3.6 Volt	
Non Operating Temperature	- 40° to 105° Celsius	
Voltage ripple	+/- 2%	Max. Values not exceeding Operating voltage

5.2 RECOMMENDABLE OPERATION CONDITION

5.2.1 TEMPERATURE, HUMIDITY

The WM-SG-SM-42 module has to withstand the operational requirements as listed in the table below.

Operating Temperature	-40° to 85° Celsius			
Humidity range	Max 85%	Nor	onde	nsing, relative humidity

The maximum operating ambient temperature range can up to 85degC, but exposure to absolute-maximum-rated conditions may cause performance degradation and affect device reliability.

5.2.2 VOLTAGE

Power supply for the WM-SG-SM-42 module will be provided by the host via the power pins

Symbol	Parameter	Min	Тур	Max	Unit
VDD_3V3	Power supply for MCU	2.0	3.3	3.6	V
VDDA	Power supply for MCU	2.0	3.3	3.6	V
VREF+	Power supply for MCU	2.0	3.3	3.6	V
VDD_RFS	Power supply for RFS	2.0	3.3	3.6	V

5.2.3 CURRENT CONSUMPTION

The WM-SG-SM-42 on TX mode output current consumption: (Typical spec is defined @3.3V 25°C BW125kHz)

Mode	TYP. (MCU 16MHz)	TYP. (MCU 4MHz)	Max.	Condition
Run Mode	7mA	2mA	10mA	RF State: Standby MCU State: Peripheral clocks works.
Stop Mode	138uA	138uA	1mA	RF State: Standby MCU State: Normal Sleep mode w/ fast wakeup
Standby Mode	1.2uA	1.2uA	0.5mA	RF State: Standby MCU State: Deep Sleep w/o fast wakeup
RX	17	mA	25mA	
Table 5-2 Output	power of TX	Power Setting		

 Table 5-1 Current consumption

TX Power		Output Power (dBm)		TYP. Current (mA)		
Setting	868MHz	915MHz	868MHz	915MHz	1GHz	
5	5.7	5.6	47	48	58	
6	6.7	6.6	49	51	61	
7	7.8	7.8	51	53	64	
8	8.8	8.8	53	56	66	
9	10.0	9.8	56	59	71	
10	11.0	10.9	60	63	74	
11	11.9	11.8	64	66	77	
12	12.9	12.8	68	71	83	
13	13.9	13.9	73	76	88	
14	14.8	14.8	79	82	94	
15	15.7	15.7	86	89	101	
16	16.5	16.4	95	97	109	
17	17.2	17.2	104	106	118	
18	17.9	17.8	112	115	125	
19	18.5	18.5	120	123	133	
20	19.0	18.8	126	127	140	

5.3 RF SPECIFICATIONS

The WM-SG-SM-42 module complies with the following features and standards; (Typical spec is defined @3.3V 25°C)

Features	Description
RF Standards	LoRa® Technology modulation
Frequency Band	863.000 MHz to 870.000 MHz 902.000 MHz to 928.000 MHz
Bandwidth	125KHz, 250KHz, 500KHz
Frequency Tolerance	-25ppm to +25ppm
RF TX Power	Adjustable up to max. +18.5 dBm*

* When Module in the high, low voltage and high, low temperature, TX power will be up to 16dBm

Sensitivity Characteristics	TYP.	MAX.	Unit
1% PER, Rx Sensitivity @ SF=7,BW=125KHz	-124**	-119	dBm
1% PER, Rx Sensitivity @ SF=12,BW=125KHz	-137**	-132	dBm
1% PER, Rx Sensitivity @ SF=7,BW=250KHz	-122**	-117	dBm
1% PER, Rx Sensitivity @ SF=12,BW=250KHz	-135**	-130	dBm
1% PER [,] Rx Sensitivity @ SF=7,BW=500KHz	-116**	-111	dBm
1% PER, Rx Sensitivity @ SF=12,BW=500KHz	-129**	-124	dBm

**Follow Semtech spec

6 CPU AND FLASH MEMORY

6.1 ARM CORTEX-M0+ CPU CORE

The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- A simple architecture that is easy to learn and program
- Ultra-low power, energy-efficient operation
- Excellent code density ·
- Deterministic, high-performance interrupt handling ·
- Upward compatibility with Cortex-M processor family ·
- Platform security robustness, with integrated Memory Protection Unit (MPU).

The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.

The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

Owing to its embedded ARM core, the STM32L052x6/8 are compatible with all ARM tools and software.

6.2 MEMORIES

The STM32L052x6/8 devices have the following features: ·

- 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 32 or 64 Kbytes of embedded Flash program memory
 - 2 Kbytes of data EEPROM

 Information block containing 32 user and factory options bytes plus 4 Kbytes of system memory

The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options:

• Level 0: no protection •

• **Level 1**: memory readout protected. The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected •

• Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse)

The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the non-volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the volatile data segment (RAM).

The whole non-volatile memory embeds the error correction code (ECC) feature.

7 I/O PORT CHARACTERISTICS

Unless otherwise specified, the parameters given as below Table.

For detail information of I/O injection parameters and conditions, please refer to STM32L052x6/8 I/O manual.

Symbol	Parameter	Conditions	MIN	МАХ	Unit
VIL	Input low Voltage		-	0.3 VDD	V
VIH	Input High Voltage		0.7 Vdd		V
Rpu	Input Pull-Up Resistance	VIN - VSS	30	60	КΩ
Rpd	Input Pull-Down Resistance	Vin - Vdd	30	60	КΩ
Vol	Output Low Voltage	CMOS port lio = +8 mA	-	0.4	V
Vон	Output High Voltage	$2.7V \leq V_{DD} \leq 3.6V$	VDD-0.4	-	V
Vol	Output Low Voltage	TTL port, Iio =+ 8 mA 2.7V≤VDD ≤ 3.6V	-	0.4	V
Vон	Output High Voltage	TTL port IIO = -6 mA 2.7V≦VDD ≤ 3.6V	2.4	-	V
Vol	Output Low Voltage	lio = +15 mA 2.7V≤VDD ≤ 3.6V	-	1.3	V
Vон	Output High Voltage	lio = -15 mA 2.7V≤VDD ≤ 3.6V	Vdd-1.3	-	V
Vol	Output Low Voltage	lio = +4 mA 1.65V≤Vdd ≤ 3.6V	-	0.45	V
Vон	Output High Voltage	lio = +4 mA 1.65V≤Vpp ≤ 3.6V	Vdd-0.45	-	V

Table7-1 I/O Static Characteristics

8 INTERFACE

Several peripheral are multiplexed GPIOs.

8.1 LPUART interface

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART has a clock domain independent from the CPU clock. It can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection ·
- Or any received data frame ·
- Or a specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

8.2 I2C Interface

WM-SG-SM-42 Module I2C interface can operate in multi-master or slave modes. . I2C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.

•		
I2C features ⁽¹⁾	I2C1	12C2
7-bit addressing mode	х	Х
10-bit addressing mode	x	Х
Standard mode (up to 100 kbit/s)	x	Х
Fast mode (up to 400 kbit/s)	x	Х
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	x	X ⁽²⁾
Independent clock	x	-
SMBus	x	-
Wakeup from STOP	Х	-

Table 8-1 STM32L052x6/8 I2C implementation

1. X = supported.

2. See for the list of I/Os that feature Fast Mode Plus capability

8.3 ADC Interface

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L052x6/8 device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference). Three channels, PA0, PA4 and PA5, are fast channels, while the others are standard channels.

The ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed.

The ADC consumption is low at all frequencies (~25 μ A at 10 kSPS, ~200 μ A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.

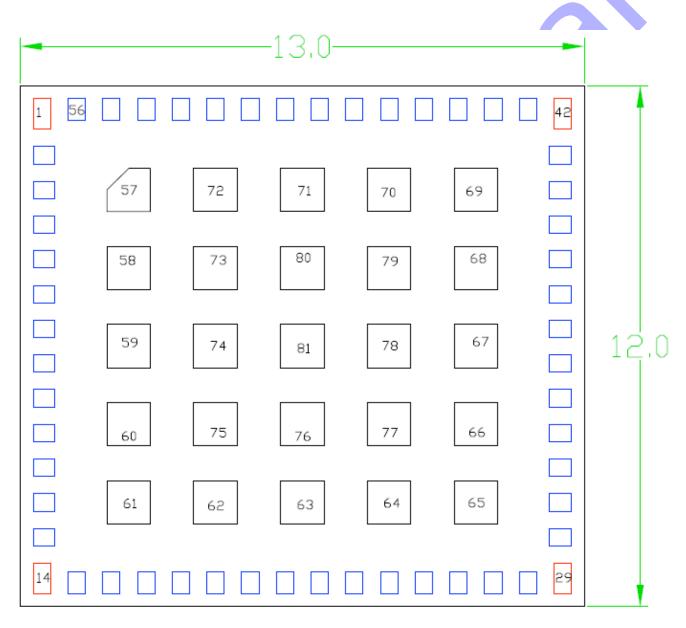
The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V.

The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668).

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers.

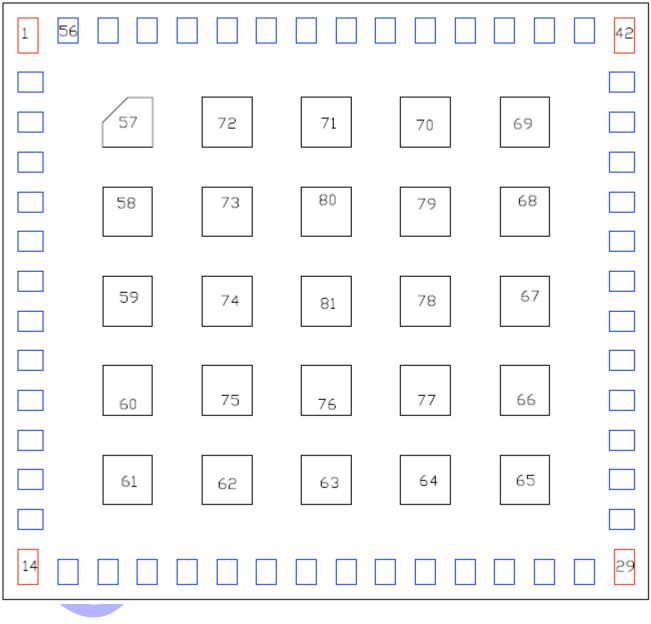
8.4 GPIO Interface


Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

9 DIMENSIONS, WEIGHT AND MOUNTING

The following paragraphs provide the requirements for the size, weight and mounting of the WM-SG-SM-42 module.

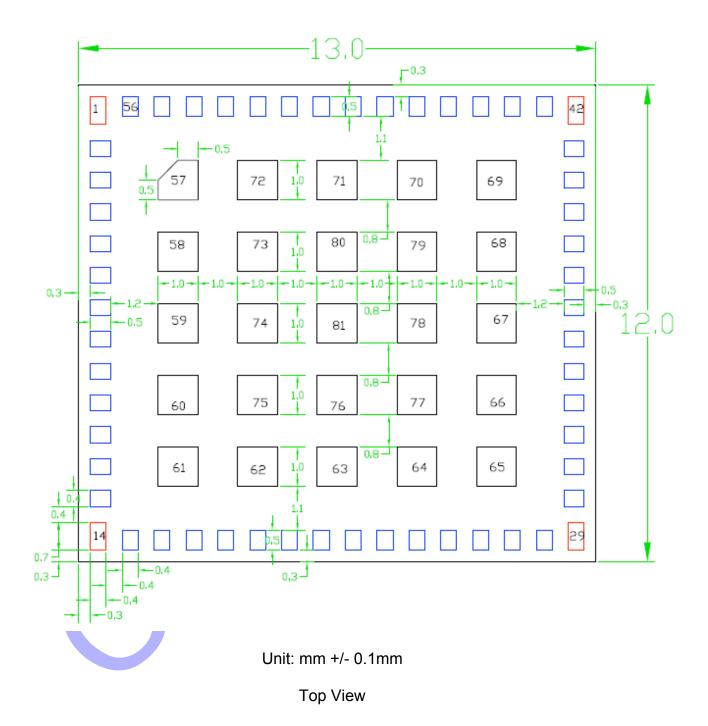
9.1 Dimensions


The size and thickness of the WM-SG-SM-42 module is "12mm (W) x 13 mm (L) x 2.0 mm (H) +/- 0.1mm " (Including metal shielding)

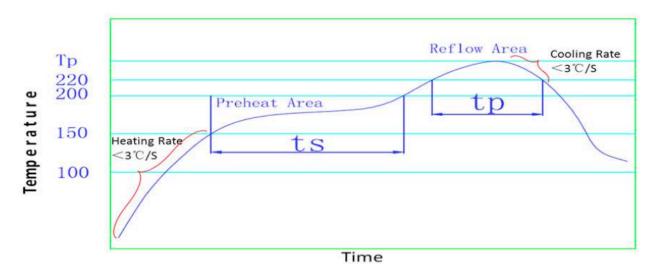
TOP View

9.2 Pin Out and Pin Description

PIN OUT


Top View

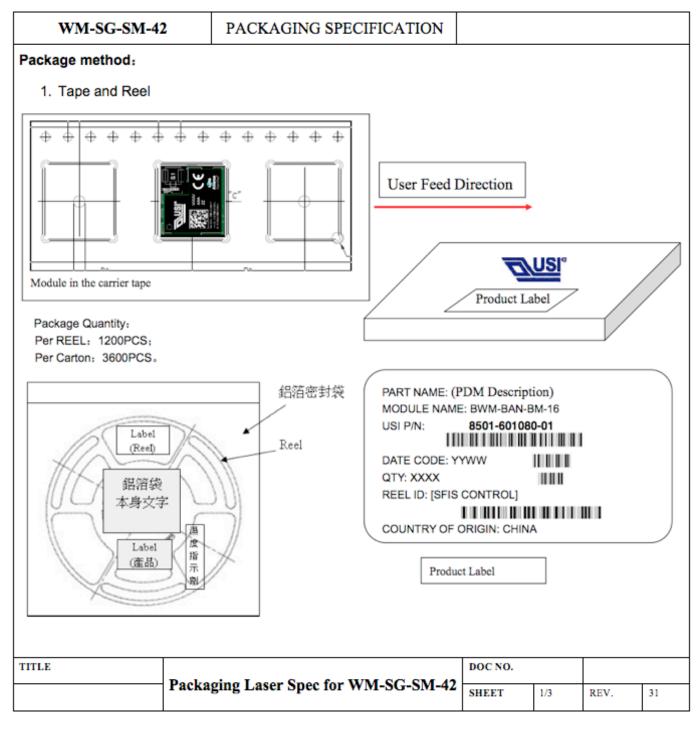
Pin Description

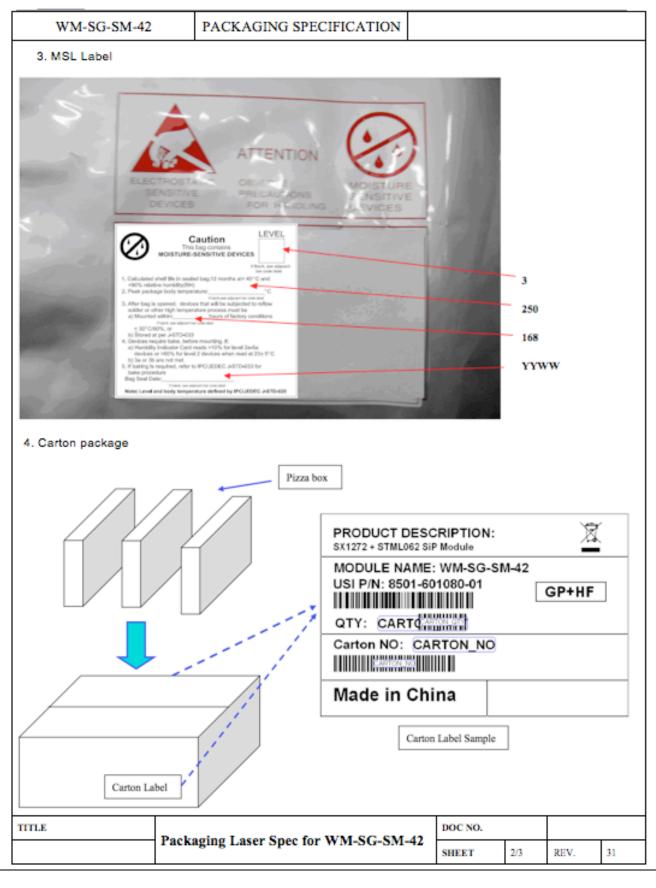

Pin-Number	Pin-Define	Туре	Description
1	GND		Ground
2	PA8/RCC_MCO		GPIO connect MCU PA8
3	PB10/LPUART TX		LPUART TX
4	PB2/LPTIM1 OUT		GPIO connect MCU PB2
5	PA7/ADC IN7		GPIO connect MCU PA7
6	PA1/COMP1 INP		GPIO connect MCU PA1
7	VREF+		VREF+ power supply
8	GND		Ground
9	VDDA		VDDA power supply
10	PB5/LPTIM1_IN1		GPIO connect MCU PB5
11	PA0/SYS_WKUP1		GPIO connect MCU PA0
12	GND		Ground
13	GND		Ground
14	GND		Ground
15	GND		Ground
16	GND		Ground
17	GND		Ground
18	GND	-	Ground
19	GND		Ground
20	MICRO_RST_N		External system reset active low
21	PA9/RF_RST		Module internal use
22	PA2/DIO0		Module internal use
23	PA3/DIO1		Module internal use
24	PA5/DIO2		Module internal use
25	PA6/DIO3		Module internal use
26	PA1/DIO4		Module internal use
27	DIO5		Module internal use
28	BOOT0		BOOT Pin
29	GND		Ground
30	VDD_RFS		VDD_RFS power supply

31	VDD_RFS	VDD_RFS power supply	
32	GND	Ground	
33	VDD_3V3	VDD_3V3 power supply	
34	VDD_3V3	VDD_3V3 power supply	
35	GND	Ground	
36	PB3/SPI1_SCK	Module internal use	
37	PB4/SPI1_MISO	Module internal use	
38	PA12/SPI1_MOSI	Module internal use	
39	PA15/SPI1_NSS	Module internal use	
40	GND	Ground	
41	GND	Ground	
42	GND	Ground	
43	PB8/RF_SW_CTRL2	Module internal use	
44	PA4/RF_SW_CTRL1	Module internal use	
45	GND	 Ground	
46	GND	Ground	
47	RF_OUT	RF_OUT Test pin	
48	GND	Ground	
49	PB7/I2C1_SDA	 GPIO connect MCU PB7	
50	PB6/I2C1_SCL	GPIO connect MCU PB6	
51	PA13/SWDIO	SWDIO	
52	PA14/SWCLK	SWCLK	
53	PB1/ADC_IN9	GPIO connect MCU PB1	
54	PA11/COMP1_OUT	GPIO connect MCU PA11	
55	PB11/LPUART_RX	LPUART_RX	
<mark>56</mark>	PB0/ADC_IN8	GPIO connect MCU PB0	
57~81	GND	Ground	

9.3 Recommend Footprint

10 RECOMMEND REFLOW PROFILE




Recommended Reflow Profile

- 1 Solder paste alloy: SAC305(Sn96.5/Ag3.0/Cu0.5).
- 2 Pre-heat Temp: 150~200°C ; Soak time(ts): 60~120sec.
- 3 Peak temp(Tp) \leq 260 °C.
- 4 Time above 220°C (tp): 40~90sec.
- 5 Optimal cooling rate < 3 $^\circ C$ /sec, from peak to 220 $^\circ C$.
- 6 The oxygen concentration < 2000 ppm.

11 PACKAGE AND STORAGE CONDITION

11.1 PACKAGE AND MARKING SPECIFICATION

WM-SG-SM-42 LoRa Module REV 0.5

11.2 ORDERING INFORMATION

USI Project Code	USI P/N	Description	Remark
WM-SG-SM-42	8501-601080-01	SM-42 w RF output by u.FL connector/AT CMD	
	8501-601080-02	SM-42 w RF output by LGA Pad/AT CMD	ТВА
Evaluation Board	8885-019387-01	Evaluation board w SM-22 LGA sku/AT CMD	

12 ESD LEVEL

Note:

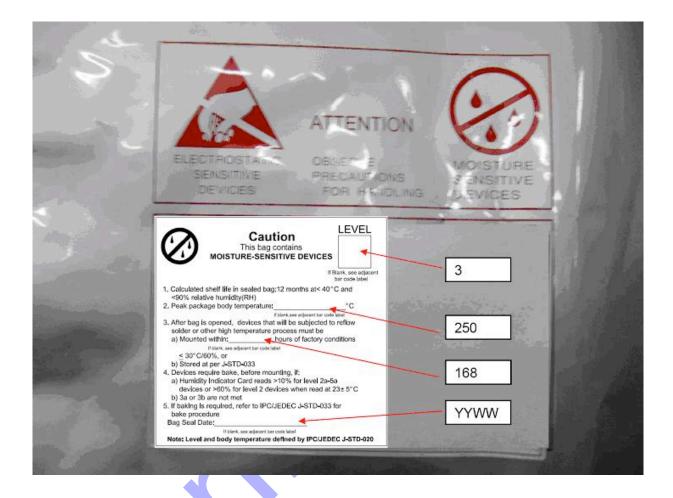
- 1. Surface Resistivity: Interior: $10^9 \sim 10^{11} \Omega$ /SQUARE EXTERIOR: $10^8 \sim 10^{12} \Omega$ /SQUARE
- 2. Dimension:475*420mm
- 3. Tolerance:+5,0mm
- 4. Color: Background : Gray Text : Red

Length leader / trailer tape:

Leader tape: \geq 550mm which includes \geq 100mm of carrier tape with empty compartments and covered with tape; remaining part might be of cover tape only.

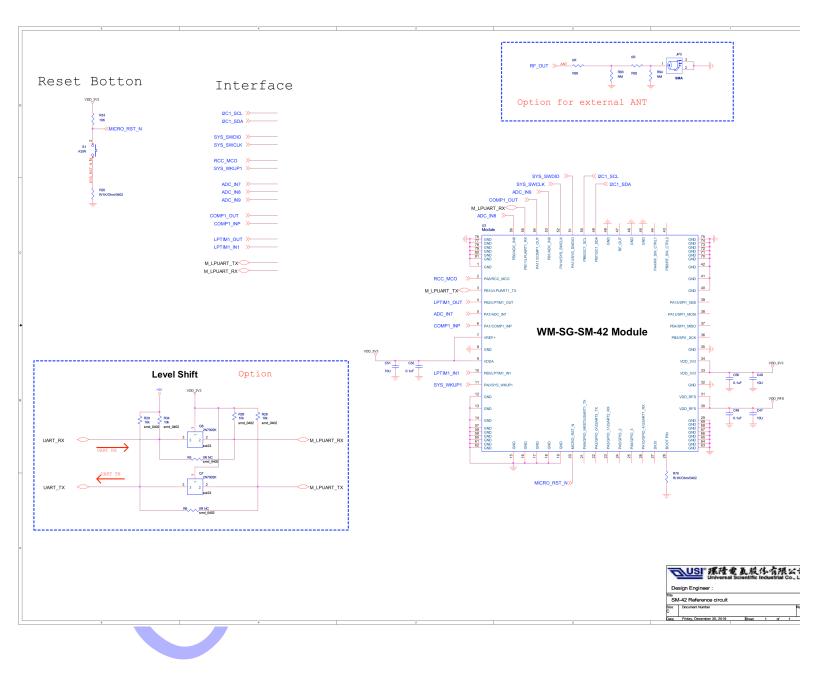
Trailer tape: \geq 160mm with empty compartments and covered with tape.

NOTES:


- 1. Material: Conductive Polystyrene (Recycle)
- 2. Color: Black
- 3. <u>Surface resistance: 10⁶ Ohms/square 以下.</u>

Cumulative tolerance per 10 pitches (P₀) is ±0.2mm.

 $A_0 \& B_0$ are measured on the plane by 0.3mm above the bottom of the pocket.


- 4. K₀ is measured from the Inside bottom of the pocket to the top surface of the carrier.
- 5. <u>Pocket position relative to sprocket hold is measured as true position of pocket,</u> not sprocket hold.

13 MSL LEVEL / STORAGE CONDITION

Life cycle: 1 years

14 APPLICATION REFERENCE DESIGN

USI reserves the right to make changes, without further notice, to any products or data to improve reliability, function, marking, and/or design. Any products, data or information furnished by USI is that USI believed to be accurate and reliable. However, USI shall not assume any liability arising from the application or use of such products, data and/or information.

For Additional information, please contact the following: *Universal Scientific Industrial Co., Ltd. Headquarters* 141, Lane 351, Taiping Road, Sec. 1, Tsao-Tuen, Taiwan, Http://www.usi.com.tw Tel: + 886-49-2350876, 2325876 Fax: +886-49-3439561, 2337360,2351093 E-mail:usi@ms.usi.com.tw